Организация транкинговой радиосвязи в службе скорой помощи. IDEN - интегрированная система мобильной связи. Радиоинтерфейс и кодирование голоса

Организация транкинговой радиосвязи в службе скорой помощи. IDEN - интегрированная система мобильной связи. Радиоинтерфейс и кодирование голоса

Термин «Транкинговая (или транковая) связь происходит от английского слова trunk (ствол) и отражает то обстоятельство, что «ствол связи» содержит несколько каналов, причем жесткое закрепление каналов за абонентами отсутствует. В литературе можно найти различные определения транкинговых систем, общим для которых является именно предоставление в распоряжение абонента одного из свободных на данный момент каналов. В частности, к данному классу относят:

Радиально - зоновые системы наземной мобильной радиосвязи, использующие автоматическое распределение ограниченного частотного ресурса ретранслятора среди большого числа абонентов;

Системы массового применения, позволяющие при ограниченном частотном ресурсе обслуживать максимальное число абонентов.

Типичной сферой применения транкинговых систем являются государственные, ведомственные, корпоративные организации и институты, такие как служба скорой помощи, пожарная служба, охрана правопорядка, органы безопасности, различные коммерческие структуры и др. По большей части транкинговые системы используются как средства оперативной связи с жестко лимитированным и постоянно контролируемым контингентом абонентов и пределах ограниченной территориальной зоны. Учитывая специфику применения транкинговых систем, их иногда называют профессиональными системами мобильной радиосвязи (PMR -Professional Mobile Radio), либо частными системами мобильной радиосвязи - Private Mobile Radio. Системы PMR, обеспечивающие соединение мобильных объектов с абонентами ТФОП, часто выделяются особо как Public Access Mobile Radio (PAMR).

Транкинговые системы связи (ТСС) могут строиться как системы с однозоновой или многозоновой структурой. Принимая во внимание специфический характер ТСС, т.е. ограниченность числа пользователей системы, переход от однозоновой к многозоновой структуре объясняется в первую очередь расширением географической зоны действия системы, а не стремлением к повышению числа абонентов (абонентской емкости) системы. При пересечении границ радиопокрытия ТСС отслеживают перемещение абонентов, обеспечивают их регистрацию, и назначение им нового частотного канала. Однако, как правило, подобный переход происходит с прерыванием связи, для восстановления которой абонентам необходимо произвести повторный вызов.

Транкинговые системы могут использовать как симплексные, так и дуплексные каналы радиосвязи, однако с целью упрощения и удешевления в них нередко применяется полудуплексный режим работы, при котором один и тот же канал поочередно используется для связи от центра управления (базовой станции) к абоненту и в обратном направлении.

Реализация принципа равного доступа к каналу связи может быть осуществлена децентрализовано либо при централизованном управлении. В первом случае функция нахождения свободного канала возлагается на абонентскую станцию, которая проводит последовательный поиск незанятого частотного канала во всем выделенном системе диапазоне. Во втором случае анализ занятости каналов связи осуществляет базовая станция либо непосредственно центр коммутации мобильной связи. Как правило, установление связи при последовательном сканировании частотного диапазона занимает достаточно большой интервал времени. Для обеспечения оперативности управления в современных ТСС предусматривается существование специального канала, посредством которого производится управление транкинговой системой, в том числе выполнение процедур установления и прекращения связи.

По способу организации канала управления различают ТСС с выделенным и распределенным каналом управления. В первом случае, как следует из названия, выделенный канал используется исключительно для управления работой системы. Во втором - в процессе сеанса связи сигналы управления передаются одновременно с речевым сигналом .

С учетом сказанного транкинговая система связи может быть представлена обобщенной структурной схемой (см. рис. 1), где использованы следующие обозначения:

МС - мобильная станция (мобильный абонент);

БС - базовая станция (центр управления);

УОР - устройство объединения радиосигналов;

Р - ретрансляторы;

ЦКМС - центр коммутации мобильной связи;

ТФОП -телефонная сеть общего пользования;

ДПУ - диспетчерский пункт управления.

Рис. 1 Обобщенная структурная схема ТСС

Следует отметить, что для ТСС наиболее характерно разделение каналов связи по частоте с индивидуальными ретрансляторами на разных частотах. Возможен и вариант ТСС с использованием широкополосных ретрансляторов, обслуживающих сразу все каналы. Назначение остальных блоков структурной схемы является очевидным и не требует дополнительных комментариев.

Стандарт МРТ 1327, разработанный министерством почт и телекоммуникаций Великобритании (Ministry of Post and Telecommunication (MPT)), определяет в основном протокол передачи информации управления и контроля состояния аппаратуры (иначе информации сигнализации) для транкинговых систем наземной и мобильной радиосвязи, причем информационные сообщения передаются по аналоговому радиоканалу. На его основе разработаны радиоинтерфейс МС (абонента), определяемый протоколом MPT 1343, и радиоинтерфейс БС - МРТ 1347. Стандартами предусматривается передача информации со скоростью 1,2 кбит/с по каждому из 500 каналов связи в диапазоне частот 201,2125...207,4875 МГц (МРТ 1347) и 193,2125...199,4875 МГц (МРТ 1343), причем каждый дуплексный канал занимает две полосы шириной 12,5 кГц с разносом каналов приема и передачи в 8 МГц .

Фирмой Ericsson разработана система транкинговой радиосвязи, получившая название EDACS (Enhanced Digital /Access Communications System - Усовершенствованная система связи с цифровым доступом). Системы EDACS выпускаются в различных модификациях, причем различают системы EDACS, сети EDACS и расширенные сети EDACS. Системы EDACS, объединенные между собой посредством контроллеров узлов связи и диспетчерских пунктов управления, образуют сети EDACS, которые, в свою очередь, с помощью некоторых интегрированных узлов связи могут объединяться в расширенную сеть для покрытия значительных территорий.

В системе EDACS применяются два типа радиоканалов - рабочий канал и канал управления. Канал управления служит для обмена цифровой информацией сигнализации между мобильными станциями и устройствами управления работой всей системы. Рабочие каналы используются для обмена собственно информацией (разговорной или данными) между мобильными станциями. Системы и сети EDACS рассчитаны на использование как аналоговых, так и цифровых станций, обеспечивающих передачу речевых сигналов в цифровой форме. Стандартная скорость передачи данных составляет 9,6 кбит/с по каждому из 20 каналов системы EDACS в диапазонах частот 30...300 МГц, 800 МГц или 900 МГц с разносом каналов связи 25, 30 и 12,5 кГц.

Общие тенденции, связанные с унификацией и интеграцией СМР идентичного назначения, привели к разработке под эгидой ETSI (European Telecommunications Standards Institute - Европейский институт стандартов связи) общеевропейского стандарта TETRA (Trans-European Trunked RAdio - Общеевропейская система транкинговой связи), изменившего свое название с апреля 1997 г. на Terrestrial Trunked Radio (Сухопутная система транкинговой связи) ввиду своего широкого распространения. ТСС на основе стандарта TETRA представляют собой новое поколение систем этого типа, следующее за аналоговым. В отличие от предыдущих, в стандарте TETRA осуществлен полный переход к цифровому представлению передаваемой информации и использовано не частотное, а временное разделение каналов. О результате этих и ряда других мер скорость передачи в системе достигла 36 кбит/с.

Для системы TETRA выделены два дуплексных участка спектра в полосе частот 380...400 МГц при разносе радиоканалов для приема и передачи в 10 МГц и разносе Соседних каналов в 25 кГц.

Итак, при выборе коммерческого оператора транкинговой связи пользователям следует обращать внимание не только на наличие лицензии Минсвязи, но и на некоторые «паспортные» данные сети. В первую очередь к ним относятся поддерживаемые протоколы связи, которые условно можно разделить на открытые и «фирменные». Открытые протоколы позволяют любой компании организовывать выпуск базового и абонентского оборудования, а вот разработчик «фирменного» протокола является единственным производителем соответствующих устройств.

Открытость протокола обусловливает возникновение конкуренции изготовителей, благодаря чему повышается производительность инфраструктурного оборудования, а на рынке появляются системы, различающиеся по функциональности и стоимости. При наличии множества предложений абонентских устройств потребитель получает возможность выбора парка радиостанций в зависимости от требуемого соотношения цена/качество. Но главное — не происходит его пожизненной привязки к аппаратуре конкретной фирмы. Например, для применения в сети, организованной на базе открытого протокола типа MPT-1327 (существует множество его разновидностей), допускается задействовать технику большинства производителей радиооборудования. Напротив, с «фирменным» протоколом EDACS способны работать только устройства компании Ericsson, а стандарт ACTIONET «понимает» лишь техника Nokia.

Зона обслуживания

По принципам организации транкинговая связь аналогична сотовой. Каждая базовая станция «покрывает» определенную площадь. Зону покрытия (читай — зону компетенции) называют сайтом (в сотовой связи — сотом). Для обеспечения устойчивой связи во всех точках зоны обслуживания необходимо ее сплошное покрытие. Одна базовая станция физически не в состоянии выполнить это условие: в зоне обязательно найдутся «дыры», где радиостанция не сможет принимать сигнал. Например, не удастся организовать устойчивую связь вблизи некоторых железобетонных зданий, и, чтобы выйти из участка «радиотени», пользователю придется обогнуть строение или перекочевать на открытое пространство. Поэтому для сплошного покрытия необходимы как минимум три базовые станции.

Качество и надежность связи определяются не только количеством передатчиков, но и местами их размещения, высотой подвеса антенн, а также техническими параметрами базовых станций. Самый простой способ проверки качества связи, обеспечиваемой конкретным оператором, — взять у него на некоторое время абонентское оборудование для опробования в рабочих условиях.

Частота

В России для коммерческих систем транкинговой связи выделено несколько диапазонов частот: 136 — 174, 403 — 470, 470 — 520 и 800 МГц. Пользователю нужно помнить, что чем ниже частота, на которой работает оператор, тем больше дальность связи. С другой стороны, чем выше частота, тем меньше расстояние между базовыми станциями и лучше качество связи. Оптимальным вариантом может оказаться диапазон 478 — 486 МГц. Раньше этот участок частотного спектра был зарезервирован для 22-го ТВ-канала, но несколько лет назад его выставили на тендер, и теперь он распределен между пятью московскими операторами радиосвязи. Данный диапазон свободен от воздействия передатчиков пейджинговых компаний и других источников помех.

Сервисное и техническое обслуживание

Кто будет устанавливать и подключать абонентское оборудование? Если оператор предлагает пользователю самостоятельно смонтировать радиостанцию в автомобиле или направляет его с этой целью в другую компанию, то, скорее всего, он попросту решил сэкономить на оплате труда технического персонала. Тогда остается открытым вопрос о гарантиях сервисного обслуживания. Кроме того, кто знает, какими еще способами он пытается минимизировать свои расходы.

Цены у всех операторов примерно одинаковы. Они состоят из двух компонентов — разового платежа в момент подключения и ежемесячной абонентской платы. Разовый платеж складывается из цены радиостанции и необходимых аксессуаров (85-90% общей суммы), стоимости оформления разрешительных документов (2-3%), подключения к сети (4-6%) и монтажа радиостанции (4-6%).

Абонентское оборудование можно купить, взять в аренду, оформить в лизинг (с возможностью выкупа через год). Кроме того, некоторые компании выкупают старое оборудование по остаточной стоимости. Его цена идет в зачет разового платежа за новое подключение.

В Москве услуги транкинговой связи оказывают более 15 операторов. Немало компаний поставляют оборудование и занимаются монтажом локальных (ведомственных) сетей. Так что заказчик всегда может выбрать фирму, которая способна полностью удовлетворить его насущные потребности.

АМТ . Это один из первых коммерческих операторов радиотелефонной связи в России. Сеть АМТ стандарта MPT-1327 построена на базе оборудования фирмы Nokia. В зону ее действия входят территория Москвы и Московской области на расстоянии до 50 км от МКАД, а также подмосковные города Солнечногорск, Дубна и их окрестности. Услуги компании рассчитаны как на индивидуальных потребителей (радиотелефоны), так и на корпоративных заказчиков (виртуальные ведомственные сети радиосвязи). В системе используются дуплексные и полудуплексные радиостанции. Кроме голосовой связи поддерживается передача данных. Имеется полноценный выход в телефонную сеть общего пользования, обеспечивается роуминг с регионами.

АСВТ («Русалтай») . Сеть «Русалтай» построена на основе оборудования Actionet фирмы Nokia. Ведущая базовая станция располагается на Останкинской башне, а 10 других развернуты в Московской области, чтобы обеспечить ее полное покрытие и частичное покрытие прилегающих районов. Пока услуги сети позиционируются как радиотелефонные, то есть клиент получает радиотелефон с прямым московским номером. Однако, в отличие от сотового телефона, предоставляемое компанией абонентское устройство способно работать и в полудуплексном режиме, который используется в транкинге для групповой связи. В сети «Русалтай» применяется не поминутный (как в сотовой связи), а посекундный биллинг, что при аналогичной стоимости эфирного времени позволяет абонентам существенно сокращать затраты.

«РадиоТел» . Этот крупнейший оператор транкинговой связи на Северо-Западе, да и в России, входит в группу «Телекоминвест». Компания «РадиоТел» — единственный петербургский оператор мобильной связи, обеспечивающий построение иерархических систем связи для корпоративных пользователей, транкинговую связь с возможностью выхода в ГТС, экстренную связь со «Скорой помощью» (03), дежурными службами администрации города и Управления по делам гражданской обороны и чрезвычайных ситуаций. В зону охвата сети «РадиоТел» входит весь Петербург и ближайшие пригороды. Терминальное оборудование производится и поставляется корпорациями Ericsson и Maxon. В начале 1996 года компания создала собственную диспетчерскую службу «Петербургское такси 068», в настоящее время обслуживающую в городе более 50% вызовов такси по телефону.

В 1999 году по заказу одной из петербургских топливных фирм «РадиоТел» разработал проект «Передача данных для приема платежей по пластиковым картам основных платежных систем». Созданная система многофункциональна и позволяет решать несколько проблем, в том числе задачу обеспечения безопасности транзакций.

В 1999 году «РадиоТел» стал победителем тендера на организацию транкинговой связи для службы «Скорой медицинской помощи» и поставил ей 350 единиц оборудования. Сегодня каждая машина «Скорой помощи» в Петербурге радиофицирована этой компанией.

«МТК-Транк»
. Сеть «МТК-Транк» построена на основе оборудования SmartZone фирмы Motorola. Шесть сайтов обеспечивают уверенную связь в столице и на расстоянии не менее 10 км от МКАД для портативных и не менее 50 км от МКАД для автомобильных радиостанций. Сеть ориентирована на коллективных пользователей (организации), для которых характерны высокая мобильность персонала и произвольное распределение сотрудников по территории Москвы и области. Каждому клиенту выделяется собственная виртуальная сеть. Групповые и персональные вызовы осуществляются по всей зоне радиопокрытия с любой абонентской радиостанции без дополнительных манипуляций и переключений. Имеются возможности установления связи вне зоны покрытия сети в режиме talk-arround (прямой канал), а также выхода с абонентской станции в телефонную сеть общего пользования.

«РадиоЛизинг» . Это первый в Москве оператор коммерческой транкинговой сети. Под торговой маркой Translink объединены несколько сетей:

Локальные сети в диапазоне 160 МГц (на "прямых" симплексных каналах);
псевдотранкинговая сеть SmarTrunk II (с 1992 года);
многозоновая транкинговая сеть МРТ-1327, построенная на базе оборудования Fylde Microsystems.

В настоящее время работают пять базовых станций (22 канала), которые поддерживают уверенную связь в пределах 50 км от МКАД.

«Регионтранк» . Компания предоставляет услуги радиотелефонной связи в Москве и Московской области, а также в регионах Центральной России. Первая из сетей связи на основе протокола ESAS, работающая в диапазоне 800 МГц, была введена в строй в 1997 году. Сейчас в Москве размещено шесть базовых станций, что обеспечивает уверенный прием в черте города для портативных абонентских станций и в ближнем Подмосковье — для автомобильных устройств. Отличительной особенностью услуг «Регионтранка» является разработка профессиональных бизнес-решений, в которых учитываются особые требования заказчиков. Например, для крупного московского таксопарка создан программно-аппаратный комплекс «Диспетчерская служба такси».

«Центр-Телко» . Городская интегрированная система радиотелефонной связи «Система Транк» развернута в соответствии с постановлением правительства Москвы от 29 октября 1996 года. Сеть построена на основе оборудования EDACS, благодаря чему обеспечиваются высокая защищенность каналов связи и надежность работы системы в любых экстремальных ситуациях. Четыре базовые станции поддерживают функционирование портативных станций в Москве и ближайшем Подмосковье (4-7 км от МКАД), а автомобильных — в пределах 50 км от МКАД. Помимо традиционных для сетей радиосвязи сервисов в сети «Система Транк» предоставляются услуги передачи цифровых данных и определения местонахождения объектов.

Операторы однозоновых транкинговых сетей

БТТ . В сети БТТ работает оборудование EF Johnson. Ее особенность заключается в том, что наряду с ретранслятором в ней используется сеть выносных приемников, связанных с базовой станцией выделенными проводными линиями. Абонентские терминалы характеризуются высокой надежностью.

«Софтнет» . Система «Софтнет» создавалась для обеспечения оперативно-диспетчерской связи. Именно этим был обусловлен выбор в качестве транкингового протокола LTR. Основными пользователями являются службы, нуждающиеся в едином управлении, такие как такси, доставка грузов, инкассация, службы безопасности и т. д. Достоинство данной сети — наличие оперативного канала связи с Московской городской службой спасения, предоставляемого абонентам бесплатно.

Псевдотранкинговые сети

MCS («Мобильные системы связи») . MCS является одной из первых транкинговых сетей, основанных на протоколе SmarTrunk-II, — она была развернута еще в 1994 году. Базовое оборудование DX-RADIO (США) размещено на 269-й и 325-й отметках Останкинской телебашни, что обеспечивает зону покрытия в радиусе 80-90 км. Вместе с «Центром-Телко» MCS входит в Городскую интегрированную систему радиотелефонной связи (ГИСРС), созданную по постановлению правительства Москвы.

В настоящее время компания «Мобильные системы связи» обеспечивает всех перевозчиков опасных грузов (топливо, масло, кислоты и т. п.) голосовой связью, датчиками контроля состояния и GPS. Единый диспетчерский пункт находится в ГУ ГОЧС. Предоставляются услуги полудуплексной и дуплексной связи, выхода в телефонную сеть, передачи данных и GPS. Имеется возможность локальной работы (без ретранслятора) на симплексных частотах по всей территории Москвы и Подмосковья. Не исключено бесплатное предоставление оборудования потенциальному заказчику для опробования в реальных условиях.

«Ланском» . Система подвижной радиотелефонной связи SmarTrunk-R эксплуатируется в Москве c 1995 года. Московский сегмент сети состоит из двух базовых станций общей емкостью 11 радиоканалов, работающих в диапазоне 430-450 МГц. За счет разноса базовых станций (БС №1 находится в районе м. «Алексеевская», а БС №2 — недалеко от м. «Беляево») обеспечивается бесперебойная связь в пределах МКАД и частично в ближнем Подмосковье.

С 1999 года компанией эксплуатируются системы подвижной радиотелефонной связи в Орле, Курске, Белгороде и Тамбове. Работа абонентов московской транкинговой сети в вышеперечисленных городах возможна при замене их терминалов в офисе фирмы «Ланском» на оборудование, совместимое с региональными транкинговыми системами. Аналогичная возможность предоставляется и абонентам региональных сетей.

«Эверлинк» . Однозоновая пятиканальная система псевдотранкинговой связи, базирующаяся на протоколе E-trunk, обеспечивает устойчивый прием на портативные радиостанции в пределах Москвы и на мобильные — в радиусе до 30 км от МКАД. Услуги телефонии не предоставляются. Лицензия распространяется на Москву и Московскую область, что позволяет предлагать потребителям услуги прямого канала (связь с портативных радиостанций до 2 км в условиях любой застройки).


Павел Дмитриев, Сети, №10/2002

Транкинговая связь - наиболее оперативный вид двухсторонней мобильной связи, максимально эффективной для координации подвижных групп абонентов. Транкинговые системы связи менее интересны для индивидуальных пользователей (связь между ними остается прерогативой сотовых радиотелефонных систем); они более перспективны и эффективны для корпоративных организаций, для групповых пользователей - для мгновенной связи между группами пользователей, объединившимися по организационному признаку или просто по интересам. Часто трафик(передача информации) замыкается в основном внутри транкинговых систем, и выход абонентов в телефонные сети общего пользования хотя и возможен, но предполагается только в исключительных случаях. Но в принципе работа транкинговых систем возможна и в локальном (однозоновом, корпоративном), и в сетевом (многозоновом, обслуживающем индивидуальных пользователей) вариантах.

Система транкинговой связи (trunk - ствол, магистраль) включает в себя базовую станцию (иногда несколько) с ретрансляторами и абонентские радиостанции (транковые радиотелефоны) с телескопическими антеннами.

Базовая станция связана с телефонной линией и сопряжена с ретранслятором с большим радиусом действия - до 50–100 км. Транковые радиотелефоны исключительно надежны, компактны и выполняются в нескольких вариантах:

l носимом - радиус действия 20–35 км, вес 300–500 г;

l возимом - радиус действия 35–70 км, вес около 1 кг;

l стационарном - радиус действия 50–120 км, вес обычно больше 1 кг.

Усредненные возможности транкинговой связи по охвату территории показаны на рис. 26.1.

Рис. 26.1. Возможности транкинговой связи по охвату территории

Вообще говоря, для транкинговых систем характерно оборудование, выполненное с использованием высоких технологий, поддерживаемое хорошим сервисом как для абонента, так и для оператора сети, оборудование, обеспечивающее полноценную дуплексную или полудуплексную радиотелефонную связь с подвижными объектами, работу в аналоговом и цифровом режимах.

При помощи транкинга малое число радиоканалов динамически распределяется между большим числом пользователей. На один канал приходится до 50 и более абонентов; поскольку абоненты не очень интенсивно используют телефон, а базовая станция работает в режиме концентратора (то есть распределяет все радиоканалы только между обратившимися к ней абонентами), вероятность ситуации «занято» не велика (существенно меньше, чем при жестком прикреплении даже нескольких абонентов к одному каналу).

Радиотелефоны могут работать как в системе, находясь в зоне действия базовой (базовых) станции и через нее связываясь с любым абонентом телефонной сети (в том числе и с транкинговым абонентом), так и индивидуально друг с другом, находясь как внутри, так и вне зоны базовых радиостанций. В первом случае непосредственная связь абонентов обеспечит большую оперативность соединения (время соединения обычно не превышает 0,3–0,5 с). Возможность непосредственной связи абонентов без участия базовой станции - основное, глобальное отличие транкинговых систем от сотовых.

Транкинговые системы связи классифицируются по следующим признакам [ 1 ].

По методу передачи речевой информации: аналоговые и цифровые. Передача речи в радиоканале аналоговых систем осуществляется с использованием частотной модуляции, шаг сетки частот обычно составляет 12,5 кГц или 25 кГц. Для передачи речи в цифровых системах используются различные типы вокодеров, преобразующих аналоговый речевой сигнал в цифровой со скоростью не более 4,8кбит/с;

В зависимости от количества базовых станций (БС) и общей архитектуры: однозоновые или многозоновые системы. В системах первого типа имеется одна БС, в системах второго типа – несколько БС с возможностью роуминга;

По методу объединения БС в многозоновых системах. БС могут объединяться с помощью единого коммутатора (системы с централизованной коммутацией), или соединяться друг с другом непосредственно, или через системы с распределенной коммутацией;

По способу поиска и назначения канала: системы с децентрализованным (СДУ) и централизованным (СЦУ) управлением. В СДУ процедуру поиска свободного канала выполняют абонентские радиостанции (АР). В этих системах ретрансляторы (РТ) БС обычно не связаны друг с другом и работают независимо. Ретрансляторы представляют собой приемопередающее устройство, работающее в дуплексном режиме. В транкинговых системах с частотным разделением каналов на каждый рабочий канал приходится один ретранслятор, приемник и передатчик работают на разных частотах. Особенностью СДУ является относительно большое время установления соединения между абонентами, растущее с увеличением числа РТ. Такая зависимость вызвана тем, что АР вынуждены непрерывно последовательно сканировать каналы в поисках вызывного сигнала (последний может поступить от любого РТ) или свободного канала (если абонент сам посылает вызов). Представителями данного класса являются системы стандарта SMARTRUNK I I

В СЦУ поиск и назначение свободного канала производится на БС. Для обеспечения нормального функционирования таких систем организуется канал управления. Его основная функция – установление соединения между двумя абонентами сети. Все запросы на предоставление связи направляются по каналу управления, по этому же каналу БС извещает абонентские устройства о назначении канала, отклонении запроса, или о постановке запроса в очередь. Каналы управления являются цифровыми, в которых передача данных производится со скоростью до 9,6 кбит/с.

4. Принципы построения транкинговых сетей

На рис.1 представлена обобщенная структурная схема однозоновой транкинговой системы связи.

Структурная схема однозоновой транкинговой системы.

Рисунок 1

В состав БС, кроме радиочастотного оборудования (ретрансляторы, устройство объединения радиосигналов антенны) входят также коммутатор, устройство управления (УУ) и интерфейсы к различным внешним сетям.

Ретранслятор (РТ) – набор приемопередающего оборудования, обслуживающего одну пару несущих частот. В большинстве транкинговых систем связи одна пара несущих означает один канал трафика (КТ). С появлением цифровых стандартов, предусматривающих временное уплотнение один РТ может обеспечить два или четыре КТ.

Антенны БС, как правило, имеют круговую диаграмму направленности. При расположении БС на краю зоны применяют направленные антенны. БС может располагать как единой приемопередающей антенной, так и раздельными антеннами для приема и передачи. В некоторых случаях на одной мачте может размещаться несколько приемных антенн для борьбы с замираниями, вызванными многолучевым распространением.

Устройство объединения радиосигналов позволяет использовать одно и то же антенное оборудование для одновременной работы приемников и передатчиков на нескольких частотных каналах.

Коммутатор в однозоновой транкинговой системе связи обслуживает весь ее трафик, включая соединение мобильных абонентов (МА) с телефонной сетью общего пользования (ТФОП) и все вызовы, связанные с передачей данных.

Устройство управления (УУ) обеспечивает взаимодействие всех узлов БС. Оно также обрабатывает вызовы, осуществляет аудентификацию вызывающих абонентов, ведение очередей вызовов, внесение записей в блок данных (БД) повременной оплаты. В некоторых системах УУ регулирует максимально допустимую продолжительность соединения с телефонной сетью. Как правило, используются два варианта регулировки: уменьшение продолжительности соединения в заранее заданные часы наибольшей нагрузки, или адаптивное изменение в зависимости от текущей нагрузки.

Интерфейс к ТФОП реализуется в транкинговых системах связи различными способами. В некоторых системах (например, SMARTRUNK I I) подключение производится по двух проводной коммутируемой линии. Более современные транкинговые системы связи имеют в составе интерфейса к ТФОП аппаратуру прямого набора номера (DID), обеспечивающую доступ к абонентам транкинговой сети с использованием стандартной нумерации АТС.

Соединение с ТФОП является традиционным для транкинговых систем связи, но в последнее время все более возрастает число приложений, предполагающих передачу данных, в связи с чем наличие интерфейса к сетям с коммутацией пакетов (СКП) также становится обязательным.

Терминал технического обслуживания и эксплуатации (ТОЭ) располагается, как правило, на БС. Терминал предназначен для контроля за состоянием системы, проведения диагностики неисправностей, тарификации, внесения изменений в базу данных (БД) абонентов. Обязательными элементами транкинговых систем связи являются диспетчерские пульты(ДП). Трангинковые системы связи используются в первую очередь потребителями служб и управлений железных дорог, работа которых требует наличия диспетчера ПЧ, ЭЧ, ТЧ. ШЧ, а также службы охраны, скорой медицинской помощи,пожарной охраны, муниципальные службы. ДП могут включаться в систему по абонентским радиоканалам, или подключаться по выделенным каналам непосредственно к коммутатору БС. В рамках одной транкинговой системе связи может быть организованно несколько независимых сетей связи. Пользователи каждой из таких сетей не будут замечать работу соседей и не смогут вмешиваться в работу других сетей. Поэтому в одной транкинговой системе связи могут работать несколько ДП, различным образом подключенных к ней.

Абонентское оборудование трангиковых систем связи включают в себя широкий набор устройств.. Как правило, наиболее многочисленными являются полудуплексные РС,так как они в наибольшей степени подходят для работы в замкнутых группах. В основном это функционально ограниченные устройства, не имеющие цифровой клавиатуры. Их пользователи имеют возможность связываться лишь с абонентами внутри своей рабочей группы, а также посылать экстренные вызовы диспетчеру. Как правило, этого вполне достаточно для большинства потребителей услуг связи транкинговых систем радиосвязи. Существуют и полудуплексные РС с широким набором функций и цифровой клавиатурой, но они, будучи существенно дороже, предназначены для более узкого круга абонентов.

В транкинговых системах связи постепенно находят применение находят применение новый класс абонентских устройств – дуплексные РС, напоминающие сотовые телефоны, но обладающие значительно большей функциональностью по сравнению с дуплексными РС. Дуплексные радиостанции транкинговых систем связи обеспечивают пользователям не только соединение с ТФОП, но и возможность групповой работы в полудуплексном режиме.

Как полудуплексные, так и дуплексные транкинговые РС выпускаются не только в портативном, но и в мобильном исполнении. Выходная мощность передатчиков мобильных РС выше.

Относительно новым классом устройств для транкинговых систем связи являются терминалы передачи данных (ПД). В аналоговых тренгинговых системах связи терминалы ПД – это специализированные радиомодемы, поддерживающие соответствующий протокол радиоинтерфейса. Для цифровых систем более характерно встраивание интерфейса ПД в АР различных классов. В состав мобильного терминала ПД часто включают спутниковый навигационный приемник системы Global Position System (GPS), предназначенный для определения текущих координат и последующей передачи их диспетчеру на пульт.

В транкинговых системах связи используются также стационарные РС, преимущественно для подключения ДП. Выходная мощность передатчиков стационарных РС приблизительно такая же, как у мобильных РС.

Архитектура многозоновых транкинговых систем связи может строиться по двум принципам. Если определяющим фактором является стоимость оборудования, используется межзональная коммутация (рис.2).

Структурная схема транкинговой сети с распределенной межзональной коммутацией

Рисунок 2

Каждая БС в такой системе имеет свое собственное подключение к ТФОП. При необходимости вызова из одной зоны в другую он производится через интерфейс ТФОП, включая процедуру телефонного номера. Кроме того, БС могут непосредственно соединены с помощью физических выделенных линий связи.

Использование распределенной межзональной коммутацией целесообразно лишь для систем с небольшим количеством зон и с невысокими требованиями к оперативности межзональных вызовов (особенно в случае соединения через коммутируемые каналы ТФОП). В системах с высоким качеством обслуживания используется архитектура с центральным коммутатором (ЦК). Структура многозоновой транкинговоц системой связи с ЦК изображена на рис. 3.

Структурная схема транкинговой сети с централизованной межзональной коммутацией

Рисунок 3

Основной элемент этой схемы – межзональный коммутатор. Он обрабатывает виды межзональных вызовов, т.е. весь межзональный трафик проходит через один коммутатор, соединенный с БС по выделенным линиям. Это обеспечивает быструю обработку вызовов, возможность подключения централизованных ДП. Информация о местонахождении абонентов системы с ЦК хранится в единственном месте, поэтому ее легче защитить. Кроме того, межзональный коммутатор осуществляет также функции централизованного интерфейса к ТФОП и СКП, что позволяет при необходимости полнлстью контролировать как речевой трафик телефонной сети, так и трафик всех приложений ПД, связанный с внешними СКП, например Интернет. Таким образом, система с ЦК обладает более высокой управляемостью.

Альтернативой сотовым сетям могут быть транкинговые коммуникационные системы. Данные технологические решения активно используются по всему миру. Многие российские организации, как частные, так и государственные, отдают предпочтение как раз таки транкинговой связи. В чем ее специфика? Каковы преимущества соответствующих решений перед иными популярными коммуникационными стандартами, внедряемыми в РФ и за рубежом?

Что представляют собой транкинговые системы?

Транкинговая связь — разновидность наземной подвижной инфраструктуры коммуникаций радиально-зонового типа. Функционирует за счет ретрансляторов между абонентами в автоматическом режиме. Кроме того, термин «транкинговая связь» соответствует способу доступа пользователей к выделенной совокупности каналов, в рамках которой свободный ресурс выделяется для конкретного абонента на период подключения.

Транкинговая инфраструктура чаще всего представлена:

Наземным оборудованием;

Абонентскими станциями.

В состав первого элемента транкинговой инфраструктуры входят базовые станции и контроллеры. Современные виды оборудования соответствующего типа позволяют обеспечивать пользование связью в рамках индивидуальных, групповых или же широковещательных типов вызова. В некоторых случаях возможно подключение одной абонентской станции к другой без обращения к ресурсам базовой станции.

Рассматриваемый тип коммуникаций применим для решения широкого спектра задач государственных силовых структур. Важно при этом, чтобы соблюдались технические требования СОРМ в системах транкинговой связи. Таковые, как правило, закреплены в ведомственных правовых актах.

Принципы работы транкинговой связи

Рассмотрим основные принципы построения транкинговых систем связи.

Соответствующая технология предполагает использование ультракоротких волн, как и сотовая связь. Для увеличения дальности сигналов в транкинговой инфраструктуре задействуются ретрансляторы. Выше мы отметили, что в ее составе присутствуют базовые станции. Она может быть представлена как одним, так и несколькими объектами — в первом случае сеть будет классифицирована как однозоновая, во втором — как многозоновая.

Первые сети транкинговой связи позволяли организовывать взаимодействие нескольких сотен абонентов. Сейчас за счет включения в нужного количества базовых станций можно обеспечивать связь фактически между любым числом абонентов. Оператор транкинговой связи может распределять приоритеты вызовов, обеспечивать коммуникации в разных режимах — симплексном, дуплексном. Современная инфраструктура соответствующего типа может обеспечивать защиту каналов от несанкционированного доступа, прослушивания, позволяет выводить устройства в интернет. Транкинговые системы связи бывают цифровыми и аналоговыми.

Кто использует транкинговые системы?

Транкинговые системы, которые являются, как мы отметили выше, радиально-зоновыми элементами сетевой инфраструктуры и функционирующие в ультра-коротком диапазоне, ориентированы главным образом на корпоративных заказчиков, на силовые ведомства. В то время как основные клиенты сотовых операторов — частные лица. Транкинг более всего подходит для организации оперативной связи в рамках групп специалистов — например, при несении дежурства, выполнении заданий, оказании помощи другим людям, если речь идет об экстренных службах.

Выше мы отметили, что рассматриваемый востребован государственными службами. Фактически соответствующие структуры являются основными пользователями данной разновидности связи. Это обусловлено рядом принципиальных отличий транкинговых коммуникаций, в частности, от сотовых — привычных обычным гражданам. А именно:

Возможностью практически моментального — в пределах 0,5 секунды, подключения одного абонента к другому;

Определением приоритетных ;

Возможностью связи абонентов друг с другом без использования базовой станции;

Наличием ресурсов для конфигурирования сети в соответствии с задачами пользователя;

Возможностью организации групповых, широковещательных, аварийных, задержанных вызовов;

Наличием ресурсов для шифрования связи, возможностью прослушивания разговоров сторонним абонентом.

Указанные опции не характерны для обычной сотовой связи. Некоторой схожестью с транкинговыми технологиями обладает мобильный стандарт Push To Talk. Но по многим критериям он не подходит для государственных служб.

Чем сотовая связь лучше транкинговой? Прежде всего возможностью передавать файловые данные с высокой скоростью — современные стандарты 4G позволяют достигать показателя в десятки мегабит в секунду. Однако стоит отметить, что представленная в стандарте TETRA транкинговая связь (если говорить о технологии в версии R2), в принципе, также способна к высокоскоростной передаче данных.

TETRA — это цифровая технология рассматриваемых коммуникаций. Но стоит отметить, что транкинговая связь «ТЕТРА» в версии RI несколько уступает стандарту R2 — в частности, по скорости передачи данных. Хотя по основным опциям возможности обеих технологий в целом сопоставимы. Полезно будет сопоставить с ними другие распространенные стандарты транкинговой связи.

Основные стандарты транкинговых коммуникаций

К самым распространенным технологиям можно отнести, прежде всего, те, что классифицируются как цифровые. Аналоговая транкинговая инфраструктура сейчас не слишком востребована. Наиболее популярные стандарты связи рассматриваемого типа:

Рассмотрим особенности каждого из них подробнее.

Стандарт EDACS

Стандарт EDACS был разработан известной шведской корпорацией Ericsson. Классифицируется он как закрытый. Данный стандарт предполагает передачу данных по каналам с использованием широкого спектра частот (но в пределах 870 МГц). В рамках одной транкинговой сети он позволяет обеспечить связь между 16 тыс. абонентов.

Рассматриваемый стандарт в достаточной мере надежный, но считается устаревшим, поскольку фактически предполагает передачу аналоговых сигналов, хоть и с использованием цифровой инфраструктуры. Кроме того, он, как мы отметили выше, закрытый. Оборудование транкинговой связи, адаптированное для него, может выпускать только фирма-разработчик.

Стандарт iDEN

Данный стандарт — также закрытый. Разработан он корпорацией Motorola. Наибольшую востребованность имеет в Северной Америке, некоторых государствах Южной Америки, в Азии. Рассматриваемая технология позволяет реализовать в рамках транкинговой сети привычные абонентам сотовых операторов сервисы — например, отправку SMS, факсов, связь с интернетом.

В России соответствующий стандарт не получил распространения, как считают эксперты, это связано с тем, что используемые в рамках него частоты — 805-821 МГц или же 855-866 МГц не слишком оптимальны с точки зрения решения задач основными пользователями транкинговых систем связи, к которым, как мы отметили выше, относятся государственные службы. К слову, фирма Motorola выпустила ряд решений, совместимых одновременно как с транкинговыми, так и с сотовыми технологиями связи.

Tetrapol PAS

Данный коммуникационный стандарт был разработан во Франции, компанией Matra Communication по заказу французских спецслужб. Характеризуется задействованием довольно низких частот — от 70 до 520 МГЦ, использование которых не слишком популярно в других странах. Однако, в России предпринимались попытки тестирования соответствующего стандарта транкинговых коммуникаций.

TETRA

Выше мы рассмотрели некоторые аспекты технологии TETRA. Изучим ее специфику подробнее.

Транкинговая связь «ТЕТРА» - это, в свою очередь, открытый стандарт коммуникаций, разработанный европейскими специалистами. За пределами Европы долгое время был не слишком распространен, однако, теперь используется многими российскими, азиатскими компаниями, африканскими и южноамериканскими фирмами.

Открытость рассматриваемого стандарта позволяет обеспечивать совместимость с ним разным производителям оборудования для транкинговой связи. Компании, планирующей выпускать соответствующий девайсов, необходимо, вместе с тем, стать членом организации MoU TETRA, тем самым подтвердив свою готовность содействовать развитию данной технологии. Многие современные бренды, производящие оборудование для транкинговых сетей, вступили в данную организацию.

Выше мы отметили, что стандарт R2 позволяет осуществлять передачу данных на высокой скорости. Это возможно, в частности, благодаря тому, что транкинговая связь по соответствующей технологии объединяется с широкополосными сотовыми каналами.

В России стандарт «ТЕТРА» известен под брендом «Тетрарус». Так, он использовался для выстраивания телекоммуникационной инфраструктуры во время Олимпиады в Сочи.

APCO 25

Еще одна популярная технология транкинговой связи — APCO 25. Разработана Ассоциацией коммуникационных служб структур безопасности. Штаб-квартиры данной структуры располагаются в США, в штатах Вирджиния и Флорида.

Преимущество данного стандарта — в возможности обеспечения связи по каналам с высоким уровнем защищенности, достигаемым за счет применения различных технологий шифрования. Еще одна примечательная особенность APCO в том, что он позволяет задействовать широкий диапазон частот — от 139 до 869 МГц. Высокий уровень защищенности, который обеспечивают соответствующие транкинговые системы связи, предопределяет достаточно высокую его востребованность у российских спецслужб.

Стоит отметить, что в РФ распространены собственные стандарты коммуникаций, функционирующих по транкинговым принципам. Их использование обусловлено необходимостью создания исключительно надежной и защищенной инфраструктуры связи. При задействовании подобного подхода применяется транкинговая система связи в вооруженных силахРФ. Многие из технологий связи, используемых в российской армии, разработаны специально для нужд обороны и не рассчитаны на массовое примнение.

Основные поставщики услуг транкинговой связи в РФ

Рассмотрим то, какие бренды в РФ поставляют услуги с использованием технологий, о которых идет речь.

Известный российский оператор транкинговой связи — компания «РадиоТел». Обладает инфраструктурой, позволяющей объединять с городскими станциями. Поставляет решения для экстренных служб, МЧС, частных заказчиков.

Один из крупнейших транкинговых операторов РФ — компания «Тетрасвязь». Специализируется на внедрении решений в рамках стандарта TETRA в самых разных регионах России. Поставляет широкий спектр сервисов — от проектирования транкинговой сети до ввода ее в эксплуатацию.

Другой крупный бренд на рынке транкинговых решений - «Регионтранк». Фирма оказывает услуги в основном в Москве и области, а также в некоторых регионах Центра РФ. Бренд позиционирует себя как поставщик решений, адаптированных под спецификацию бизнес-процессов конкретных организаций-заказчиков.

Еще одна известная компания, которая ведет деятельность в сегменте транкинговых технологий - «Центр-Телко». Можно отметить, что в ее инфраструктуре применены решения, функционирующие в рамках стандарта EDACS.

Перспективы развития транкинговых решений в РФ

Итак, мы изучили, что такое транкинговая связь, принцип построения коммуникаций с использованием ее стандартов. Посмотрим теперь, что говорят эксперты относительно перспектив развития соответствующих решений в России. Данная проблематика является темой для крупнейших конференций с участием представителей телекоммуникационной индустрии РФ — ведомств, поставщиков сервисов, их заказчиков.

В сообществе обсуждаются преимущества собственно транкинговых решений прежде всего перед сотовыми технологиями, а также применимость существующих стандартов данных коммуникаций в РФ. Так, в среде экспертов в области решений, о которых идет речь, распространена точка зрения, по которой для России оптимальной будет как раз таки технология TETRA — с учетом особенностей развития услуг связи в РФ.

Выше мы отметили, что именно стандарт «ТЕТРА» был выбран для выстраивания коммуникационной инфраструктуры на Олимпиаде в Сочи. Но в России, так или иначе, представлено большинство технологий транкинговой связи из тех, что где-либо применяются в мире — и это не считая специальных военных разработок. Большое количество решений соответствующего типа, внедренных в РФ, обусловлено, прежде всего, отсутствием единых, принятых в федеральном масштабе, критериев выбора оптимальных технологических платформ для выстраивания транкинговой инфраструктуры.

Развитие соответствующего типа связи в России может быть затруднено неоднозначным восприятием преимуществ данных решений руководителями ведомств, которые являются основными пользователями рассматриваемых технологий. Для них не всегда очевидно превосходство транкинговой инфраструктуры над сотовыми сетями. Это обусловлено разными причинами.

Прежде всего тем, что аппаратура аналоговых систем транкинговой связи, цифровых решений соответствующего типа стоит, как правило, ощутимо дороже, чем девайсы для пользования сотовыми технологиями. При этом ведомства часто не берут в расчет очевидных преимуществ транкинговой связи — заключающихся, прежде всего, в оперативности и защищенности переговоров и передачи информации. Кроме того, фактические расходы, связанные с пользованием связью, при задействовании транкинговых решений могут быть существенно ниже, чем в случае с сотовыми коммуникациями — при грамотном проектировании данного типа инфраструктуры связи.

Стоит отметить, что принцип транкинговой связи применим не только для обеспечения оперативных переговоров между абонентами. На базе соответствующих технологий могут быть реализованы системы определения местонахождения объекта — в сочетании с его GPS-координатами, а также его отслеживания мониторинговыми центрами. При этом при выстраивании соответствующей инфраструктуры может не потребоваться внедрения относительно дорогих дуплексных решений — вполне может оказаться достаточно и симплексных девайсов. Данный способ применения транкинговой связи — еще один фактор роста интереса к ней со стороны различных российских фирм и ведомств.

Резюме

Итак, мы изучили, что такое транкинговые технологии, рассмотрели основные коммуникационные стандарты, соответствующие им. Основные пользователи соответствующих решений — российские спецслужбы, ведомственные структуры, крупные бизнесы. В подразделениях армии РФ применяются транкинговые системы связи, разработанные специально для решения военных задач — закрытого типа.

Основные преимущества, которыми характеризуются рассматриваемые технологии: оперативность обмена данными, защищенность информации, высокая скорость передачи данных (если речь идет о современных цифровых стандартах), возможность выстраивания сетей в большом масштабе — при условии использования высокопроизводительных и представленных в достаточном количестве базовых станций.

У транкинговых сетей много общего с сотовыми — функционирование в ультра-коротком диапазоне, возможность передачи текстовых сообщений между девайсами, а также получения доступа в интернет при задействовании соответствующих устройств. Аппаратные решения, используемые в рамках транкинговой инфраструктуры, стоят, как правило, дороже. Но при оптимизированном их внедрении компания-заказчик может существенно сэкономить — прежде всего, на трафике.

В мире принято довольно большое количество стандартов транкинговой связи. В России и Европе наибольшей популярностью характеризуется технология «ТЕТРА», в США — APCO. Хотя в РФ с той или иной степенью активности задействуется большинство существующих в мире транкинговых стандартов.

Перспективы соответствующего типа связи в РФ во многом зависят от того, какие из технологий будут приняты в качестве ведущих — хотя бы в большинстве регионов страны. Есть основания говорить о том, что главным стандартом все же будет «ТЕТРА» - как наиболее подходящий для России исходя из специфики развития телекоммуникационного рынка страны.

Другое значимое условие успешного развития такого технологического направления, как транкинговая связь в РФ — повышение уровня знаний и компетенций руководства ведомств, являющихся фактическими и потенциальными пользователями соответствующих решений. Пока для многих структур власти преимущества рассматриваемых технологических концепций — не вполне очевидны. Но, безусловно, у транкинговых решений в РФ — есть свой потребитель, и они уже сейчас самым активным образом используются. В России приняты нормативно-правовые акты, регулирующие использование соответствующих технологий спецслужбами. Таким образом, уже на уровне законодательного регулирования в РФ созданы условия для развития транкинговой связи.

Безусловно, может потребоваться разработка и принятия дополнительных правовых актов, действие которых будет распространяться также и на гражданские сферы — но в случае заинтересованности делового сообщества и крупнейших ведомств, можно ожидать появления соответствующих инициатив на уровне регулирующих структур власти.

Развитие рассматриваемых технологий в РФ может прослеживаться в расширении областей его применения, а также в совершенствовании аппаратных компонентов и ПО, задействуемых в целях обеспечения функционирования транкинговой инфраструктуры.

просмотров